On generalized blocks for alternating groups
نویسندگان
چکیده
منابع مشابه
On generalized blocks for alternating groups
In a recent paper Külshammer, Olsson, Robinson gave a danalogue for the Nakayama conjecture for symmetric groups where d ≥ 2 is an arbitrary integer. We prove that there is a natural d-analogue of the Nakayama conjecture for alternating groups whenever d is 2 or an arbitrary odd integer greater than 1. This generalizes an old result of Kerber.
متن کاملOn defect groups for generalized blocks of the symmetric group
In a paper of 2003, B. Külshammer, J. B. Olsson and G. R. Robinson defined l-blocks for the symmetric groups, where l > 1 is an arbitrary integer. In this paper, we give a definition for the defect group of the principal l-block. We then check that, in the Abelian case, we have an analogue of one of M. Broué’s conjectures.
متن کاملNEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS, TOPOLOGICAL GENERALIZED GROUPS, AND TOP SPACES
The purpose of this paper is to introduce new methods for constructing generalized groups, generalized topological groups and top spaces. We study some properties of these structures and present some relative concrete examples. Moreover, we obtain generalized groups by using of Hilbert spaces and tangent spaces of Lie groups, separately.
متن کاملPRECOMPACT TOPOLOGICAL GENERALIZED GROUPS
In this paper, we introduce and study the notion of precompacttopological generalized groups and some new results are given.
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.06.033